/ martes 17 de abril de 2018

Olimpiada de Matemáticas en Veracruz

¿Cuántas formas hay de llegar de tu casa a la escuela donde estudias? ¿Cuántas maneras hay de pintar una cuadrícula de tamaño 3x3 con tres colores distintos? Si las preguntas de este tipo suponen un reto para tu imaginación y te entusiasma intentar responderlas, seguramente te gustan las matemáticas, puesto que detrás de la solución se encuentran éstas. ¿Eres estudiante menor de 20 años y cursas el nivel de secundaria o bachillerato en el estado de Veracruz? De ser así, entonces puedes participar en los concursos de la Olimpiada Mexicana de Matemáticas (OMM) que se realizan anualmente en la entidad.

En nuestro país un grupo de profesores de la UNAM y el IPN tuvo la idea de difundir las matemáticas a través de concursos, surgiendo de esta manera la OMM, teniendo como sede de su primer Concurso Nacional la ciudad de Xalapa, Veracruz, en septiembre de 1987, año a partir del cual se ha realizado el evento anualmente. Así pues, la OMM surgió como un programa de la Sociedad Matemática Mexicana, cuyo objetivo es promover el estudio de las matemáticas en forma creativa, buscando desarrollar el razonamiento y la imaginación de los jóvenes.

El proceso de selección de la delegación de Veracruz, que nos representa en el Concurso Nacional en noviembre de cada año, comienza en febrero; esto a través de los sistemas y subsistemas de enseñanza básica y media superior del estado. Primeramente, en las escuelas se realiza la detección y selección de chicos con habilidades sobresalientes en matemáticas, estos chicos representan a sus escuelas en otras etapas como pueden ser exámenes de zona, regionales y estatales por sistema y subsistema, para llegar al Concurso Estatal en el mes de junio.

La preselección se conforma por los 18 estudiantes que obtengan la mayor puntuación en el Concurso Estatal, a quienes se les da un entrenamiento que tiene como objetivo su preparación para presentar el Examen Selectivo 1, que destaca a doce participantes, quienes reciben una preparación aún más rigurosa para presentar el Examen Selectivo 2, a través del cual se elige a seis estudiantes que finalmente integran la delegación que participa en el Concurso Nacional, representando al estado de Veracruz. Cabe señalar que los exámenes que se aplican en las diversas etapas son todo un reto a la imaginación de los jóvenes, quienes con entusiasmo se adentran al maravilloso mundo de la abstracción inmerso en las matemáticas.


Participación destacada

Del 5 al 10 de noviembre de 2017 se llevó a cabo en Santiago, Nuevo León, el XXXI Concurso de la OMM. Durante esa semana se realizaron el examen, las sesiones de coordinación, las reuniones del jurado y la ceremonia de premiación, además de diversas actividades sociales y culturales para los participantes. El Comité Organizador de la OMM elaboró el examen a partir de los problemas que le envían las delegaciones estatales, así como miembros de la comunidad matemática del país. Los problemas elegidos versan sobre distintos temas de matemáticas básicas y deben ser inéditos.

El examen consta de dos pruebas escritas que se aplican en dos días consecutivos, cada una de las cuales consta de tres problemas y se otorgan cuatro horas y media para su resolución. Cada concursante presenta por escrito su solución para cada uno de los seis problemas. La resolución correcta de los problemas del examen requiere, en general, de mucho ingenio y de gran habilidad en el manejo de conocimientos básicos de matemáticas.

Cabe destacar que la participación por parte de la delegación de Veracruz en el XXXI Concurso de la OMM fue sobresaliente, obteniendo dos medallas de plata y una de bronce. Los estudiantes que nos representaron fueron: Carlos Reyes Valdivieso, Iván García Mestiza (plata), Mariola Camacho Lie (bronce), Yeudiel Lara Moreno (plata), Santiago Atilano Hernández y Francisco Javier Barragán Sánchez.


Ejemplo de problema

Veamos un ejemplo de problema como los que se trabajaron en el XXXI Concurso de la OMM: Problema: Ocho personas están sentadas alrededor de una mesa redonda, como se muestra en la Figura 1. Intercambian lugares una pareja a la vez. Sólo está permitido intercambiar lugares con el vecino de la izquierda o con el de la derecha. ¿Cuál es el menor número de intercambios que debe hacerse para que todos ocupen el lugar del compañero que tenían enfrente al comienzo del juego?

Solución: Primeramente observamos que para mover a una persona a la silla opuesta se necesitan al menos cuatro movimientos. Además, en cada movimiento se mueve a dos personas, por lo que al menos se necesitarán 16 movimientos para llevar a cada persona a la silla opuesta. Así que sólo necesitamos encontrar una manera de mover a todos al lugar opuesto en exactamente 16 movimientos.

Numeramos los lugares del 1 al 8 en sentido horario como se muestra en la Figura 2. Para llevar a la persona que está en la silla 1 a la silla 5 procedemos como sigue: intercambiamos a las personas que están en las sillas 1 y 2, luego a las que están en las sillas 2 y 3, luego a las que están en las sillas 3 y 4, y finalmente a las que están en las sillas 4 y 5.

A continuación, usando el procedimiento descrito en el párrafo anterior, llevamos a la persona que está en la silla 8 a la silla 4, a la persona que está en la silla 7 a la silla 3, y finalmente a la persona que está en la silla 6 a la silla 2. Es claro que las personas que faltan quedan acomodadas en la silla opuesta a la que estaban al principio y necesitamos exactamente 16 movimientos.


*Facultad de Matemáticas UV. Correo: francischernandez@uv.mx


¿Cuántas formas hay de llegar de tu casa a la escuela donde estudias? ¿Cuántas maneras hay de pintar una cuadrícula de tamaño 3x3 con tres colores distintos? Si las preguntas de este tipo suponen un reto para tu imaginación y te entusiasma intentar responderlas, seguramente te gustan las matemáticas, puesto que detrás de la solución se encuentran éstas. ¿Eres estudiante menor de 20 años y cursas el nivel de secundaria o bachillerato en el estado de Veracruz? De ser así, entonces puedes participar en los concursos de la Olimpiada Mexicana de Matemáticas (OMM) que se realizan anualmente en la entidad.

En nuestro país un grupo de profesores de la UNAM y el IPN tuvo la idea de difundir las matemáticas a través de concursos, surgiendo de esta manera la OMM, teniendo como sede de su primer Concurso Nacional la ciudad de Xalapa, Veracruz, en septiembre de 1987, año a partir del cual se ha realizado el evento anualmente. Así pues, la OMM surgió como un programa de la Sociedad Matemática Mexicana, cuyo objetivo es promover el estudio de las matemáticas en forma creativa, buscando desarrollar el razonamiento y la imaginación de los jóvenes.

El proceso de selección de la delegación de Veracruz, que nos representa en el Concurso Nacional en noviembre de cada año, comienza en febrero; esto a través de los sistemas y subsistemas de enseñanza básica y media superior del estado. Primeramente, en las escuelas se realiza la detección y selección de chicos con habilidades sobresalientes en matemáticas, estos chicos representan a sus escuelas en otras etapas como pueden ser exámenes de zona, regionales y estatales por sistema y subsistema, para llegar al Concurso Estatal en el mes de junio.

La preselección se conforma por los 18 estudiantes que obtengan la mayor puntuación en el Concurso Estatal, a quienes se les da un entrenamiento que tiene como objetivo su preparación para presentar el Examen Selectivo 1, que destaca a doce participantes, quienes reciben una preparación aún más rigurosa para presentar el Examen Selectivo 2, a través del cual se elige a seis estudiantes que finalmente integran la delegación que participa en el Concurso Nacional, representando al estado de Veracruz. Cabe señalar que los exámenes que se aplican en las diversas etapas son todo un reto a la imaginación de los jóvenes, quienes con entusiasmo se adentran al maravilloso mundo de la abstracción inmerso en las matemáticas.


Participación destacada

Del 5 al 10 de noviembre de 2017 se llevó a cabo en Santiago, Nuevo León, el XXXI Concurso de la OMM. Durante esa semana se realizaron el examen, las sesiones de coordinación, las reuniones del jurado y la ceremonia de premiación, además de diversas actividades sociales y culturales para los participantes. El Comité Organizador de la OMM elaboró el examen a partir de los problemas que le envían las delegaciones estatales, así como miembros de la comunidad matemática del país. Los problemas elegidos versan sobre distintos temas de matemáticas básicas y deben ser inéditos.

El examen consta de dos pruebas escritas que se aplican en dos días consecutivos, cada una de las cuales consta de tres problemas y se otorgan cuatro horas y media para su resolución. Cada concursante presenta por escrito su solución para cada uno de los seis problemas. La resolución correcta de los problemas del examen requiere, en general, de mucho ingenio y de gran habilidad en el manejo de conocimientos básicos de matemáticas.

Cabe destacar que la participación por parte de la delegación de Veracruz en el XXXI Concurso de la OMM fue sobresaliente, obteniendo dos medallas de plata y una de bronce. Los estudiantes que nos representaron fueron: Carlos Reyes Valdivieso, Iván García Mestiza (plata), Mariola Camacho Lie (bronce), Yeudiel Lara Moreno (plata), Santiago Atilano Hernández y Francisco Javier Barragán Sánchez.


Ejemplo de problema

Veamos un ejemplo de problema como los que se trabajaron en el XXXI Concurso de la OMM: Problema: Ocho personas están sentadas alrededor de una mesa redonda, como se muestra en la Figura 1. Intercambian lugares una pareja a la vez. Sólo está permitido intercambiar lugares con el vecino de la izquierda o con el de la derecha. ¿Cuál es el menor número de intercambios que debe hacerse para que todos ocupen el lugar del compañero que tenían enfrente al comienzo del juego?

Solución: Primeramente observamos que para mover a una persona a la silla opuesta se necesitan al menos cuatro movimientos. Además, en cada movimiento se mueve a dos personas, por lo que al menos se necesitarán 16 movimientos para llevar a cada persona a la silla opuesta. Así que sólo necesitamos encontrar una manera de mover a todos al lugar opuesto en exactamente 16 movimientos.

Numeramos los lugares del 1 al 8 en sentido horario como se muestra en la Figura 2. Para llevar a la persona que está en la silla 1 a la silla 5 procedemos como sigue: intercambiamos a las personas que están en las sillas 1 y 2, luego a las que están en las sillas 2 y 3, luego a las que están en las sillas 3 y 4, y finalmente a las que están en las sillas 4 y 5.

A continuación, usando el procedimiento descrito en el párrafo anterior, llevamos a la persona que está en la silla 8 a la silla 4, a la persona que está en la silla 7 a la silla 3, y finalmente a la persona que está en la silla 6 a la silla 2. Es claro que las personas que faltan quedan acomodadas en la silla opuesta a la que estaban al principio y necesitamos exactamente 16 movimientos.


*Facultad de Matemáticas UV. Correo: francischernandez@uv.mx


Policiaca

Enfermeros son secuestrados a metros de llegar a sus domicilios

Los captores ya entablaron charla con la familia de uno de ellos para fijar el monto del rescate

Local

Con resguardo de la Gendarmería, sale tren de Río Blanco con destino al centro del país

El maquinista y los garroteros ahora son vigilados por elementos de esta corporación, con quienes intercambian señales en medio de la fricción de las ruedas

Local

Ranas, salamandras y hasta cangrejos, desaparecieron del cañón de Río Blanco

Al crecer la mancha urbana obliga a las especies a emigrar a otras partes de las montañas: Protección Ambiental y Forestal

Finanzas

En 2017, Mexichem reportó ventas por cinco mil 828 millones de dólares

"En 2018, nos permitirá expandir nuestras soluciones de sistemas de riego y fortalecer nuestro compromiso con la gestión sostenible de los recursos hídricos"

Finanzas

Banco Accendo le apuesta a la biometría como medida de seguridad

La institución inicia operaciones con una cartera de mil 300 clientes y 180 colaboradores

Finanzas

El ataque no fue en el terreno de la banca: ABM

El problema ocurrió en los "conectores" entre las instituciones y el SPEI

Deportes

Buscan talentos para el equipo de Tiburones Rojos Femenil

Con gran respuesta se llevó a cabo la primera sesión de visorias para reclutar a jugadoras que habrán de reforzar al equipo femenil de los Tiburones Rojos de Veracruz

Política

Ganará Meade con el voto de indecisos, asegura Ríos Piter

Quienes apoyan a Margarita Zavala no acudirán al llamado de Anaya

Círculos

Gente Cool

Hola amigos lectores como están buenos días espero que todos tengan un excelente fin de semana y que sigan con la amable lectura de Diario de Xalapa